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SENSOR NOISE AND KALMAN FILTER FOR AIDED

INERTIAL NAVIGATION SYSTEM

by
Gurmohan S. Grewal

ABSTRACT

Inertial Navigation System, barometric altimeter, TACAN, and ILS
are used to achieve a synergistic combination of the outputs of indi-
vidual subsystems. Kalman filter is used to provide an ideal method
fer data processing in this multisensor navigation system. The filter
design begins with the development of mathematical and statistical
error models to describe the truth system. The truth model is sim-~
plified and reduced, in steps, to lower the cocmputation burden on the
on-board computer. The covariance analysis and the Monte Carlo methods
of testing the performance of the Kalman filters based on reduced and
simplified system models are discussed. Suggestions for further

research in the area of fault detection and isolation are offered.
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I. INTRODUCTION

Inertial Navigation Systems (INS) and non-inertial navigation aids
such as TACAN, ILS, Loran, OMEGA, navigation satellites, etc., have been
used in a number of multisensor-based navigation systems. Outputs of the
individual subsystems are combined synergistically. The software accom-
plishes this combination ideally utilizing the data from the subsystems to
yield much more accurate results than these subsystems can provide unaided.
Data processing algorithm, called Kalman filter, provides a systemic and
logical method of weighing various sources of information to produce a best
estimate of the quantities of interest.

This research 1s concerned with the development of a Kalman filter that
combines the data from a baro-inertial navigation with the range and bearing
~ measurements of a TACAN system during the cruilse portion of the flight and
the measurements from an ILS system during the descent and the final approach
phase of a flight (Ref 1). The resulting filter provides the position and
the attitude of the aircraft.

The performance of a Kalman filter 1s dependent upon adequa;e mathemat—
ical and statistical models to describe the true system including system and
measurement dynamics, system disturbances and measurement errors, and initial
condition information. These models are formulated in the state space.

There are two approaches available for the state space formulation of the
models: the "total" state space models and the "error" state space models.
In the total state space formulation, position, velocity, and attitude are
among the state variables, and the measurements include accelerometer out-
puts and signals from TACAN or ILS. The resulting vehicle dynamics equations
are nonlineaf, high frequency, and are not adequately developed for use 1in
the Kalman filter. In the error state space formulation, the errors in the
inertial navigation system position, velocity, and attitude values are among
the state variables, and measurements are éomposed of the differences between
the inertial and the external source data. The resultant vehicle dynamics
equations for the error state space formulation are low frequency, linear,
and fairly well developed for use in the Kalman filter (Ref 2, 3, 4).
Consequently, the error state space formulation, which is also called
"{ndirect" filter, is adopted. Further, the indirect filter can be imple-~

mented in two ways: feedforward and feedback. In the case of feedforward,




the output of the filter, which is the optimal estimates of the errors
between the inertial system outputs and the true values, 1s subtracted from
the inertial system outputs to obtain the best available estimate of the
vehicle position, velocity, and attitude. The inertial system 1s unaware of
the existence of the Kalman filter. The inertial system 1s free to drift
with unbounded errors. As these errors get large, the adopted model of the
inertial system becomes iavalid, resulting in filter "divergence."” On the
other hand, in the feedback configuration, the output of the filter, which
is the error between the true values and the inertial values, is fed back to
the inertial system to obtain a set of corrected inertial outputs. Thus the
inertial system errors are not allowed to grow unbounded. Moreover, the
filter need not propagate the estimates of the error state variables. Hence,
the feedback configuratlion is preferred.

If the comprehensive truth models are hsed in the development of Kalman
filter, the resulting filter will require extensive memory and computat{ion
time, making it impractical for the limited on-board computer to handle the
problem. The computation load 1s approximately proportional to the third
power of the number of. states required for modelling the system dynamics.
Therefore, simplified models, rather than the truth models, are used in the
filter development. The models simplification will result in performance
degradation. In order to make intelligent approximations and assumptions
necessary to obtain workable models, it is important to thoroughly understand
the laws governing the involved system. Resulting performance degradation
can be analyzed using covariance analysis and the Monte Carlo methods. The
Alr Force has fully developed, unclassified, transportable software packages
for vehicle trajectory generation (Ref 5), covariance analysis (Ref 6),
Monte Carlo énalysis (Ref 7), and for plotting the results of Monte Carlo
analysis (Ref 8), specifically to aid the testing and evaluation of the
Kalman filter.

II. OBJECTIVES

The effort involved for this Summer Faculty Program had two main objectives:

(1) To provide an option for the injection of random errors into the out-
puts of the INS, TACAN, and air data sensor models of the Digital
Avionics Information System (DAIS). Each of these random error sources
is to be capable of interruption by the setting of an appropriate flag

bit in a control word.




(2) After a detalled study of the available comprehensive TACAN/ILS-
aided baro-inertial navigation system models (Ref 2, 3, 4, 9),
develop reduced states simplified models in order to obtain a work-
able Kalman filter. The simplifications and the reductions are to
be implemented in steps in order that the Kalman filter resulting

‘ from each approximation can be tested for the.performance sensitiv-
ity to that particular approximation. There will not be enough
time to complete the performance analysis, but the strategy for the
step~-by~-step models simplificatian 1s to be well established by the

end of this ten~week summer period.

III. RANDOM ERRORS INJECTION INTO DAIS SENSOR MODELS ,
In order to simulate various error conditions, a control word is
defined with the following bit assignments: : f : ‘i

Control Word Bit Assignments

f ‘ R -
‘ Error Bit No Default
Model Signal 1=ON, 0=OF Value ,F
INS Actual Latitude 1 1 .
1 Lat. Error 2 0 i
5 Llat. Error 3 0 .
Actual Longitude 4 1 )
1 Long. Error 5 0
5 Long. Error 6 0
TACAN Actual Range 7 1
1 . Range Error 8 0
5 Range Error 9 0 )
Actual Bearing 10 1l ' ﬂ
1 Bearing Error 11 0
5 Bearing Error 12 0
Air Data] Actual TAS 13 1 |
1 TAS Error 14 0
5 TAS Error ' 15 0 , ﬁ
Not Used 16 0 -~

-




The DEC~-10 FORTRAN statement for the control word is inserted in the
SCEN subroutine of DAIS:

~

IERROR = "oxXxxx"

[—-———— INS Latitude Error

INS Longitude Error
TACAN Range Error
TACAN Bearing Error
Air Data Error

Default value IERROR = "0Ql11111”
1 , NO Noise
Octal Digit Values = 2 , 1 Noise
4 , 5 Noise

The control word is set by the operator at the beginning of the simulation

rune.

3.1 Random Noise Model

A normally distributed random variable N of zero mean and unit

varlance 1s obtained from two independent samples Uj and U, of uniform
distribution between zero and one by the following equation:

N —;,\)L‘-z b)) sim Ay

A second normally distributed 1is obtained from the above equation by
changing the SIN to COS:

N=N-2dwy Cor2TWo

The time correlation is introduced as follows:

Xm = exp(—4E/T) X, ﬁ](l- ep(~2 M) N,

where

n = nth {teration
4t = lteration interval 1
¢ = correlation time ﬁw,‘,ﬁ




The error e, of mean M and standard deviation is obtained by the fol-
lowing equationm:

-~

ep =Xy v+ M

" Since this random noise is used repeatedly, a subroutine called
RNOISE 1s generated for it. FORTRAN coding for this subroutine is as
follows:

SUBROUTINE RNOISE(XLAST,DELT,TAU,SIGMA,ERR,XCUR)
DOUBLE PRECISION X,X1,X2,RHO,ERR,XCUR,XLAST,PI2
IF(X2.EQ.0.) GO TO 5
X=X2
X2=0.
GO TO 10
5  CALL RDN(U1)
CALL RDN(U2)
PI2=6.28318530717958648D0
X1=DSQRT (~2.DO*ALOG(U1) ) *DCOS (P12*U2)
X2=DSQRT (~2 .DO*ALOG(UL) ) *DSIN (PI2*U2)
X=X1
10  RHO=DEXP(-DELT/TAU)
XCUR=RHO*XLAST+DSQRT (1-RHO**2) X
ERR=SIGMA*XCUR
RETURN
END

The variable X2 needs to be zeroed at the beginning of the simulation.

3.2 INS Error Model ’ ﬁ

The INS error model introduces errors into the horizontal naviga- ’ ]
tion channels. These errors have the following parameters:

Velocity Error Standard Deviation = 0.707 n.m./hr. per axis ] V.i

]

Velocity Error Mean Error = 0 per axls

Velocity Error Correlation Time = 30 min. per axis




Since the INS model does not integrate velocity, the velocity error 1is
integrated to form position errors to be added to INS position outputs.
First, two velocity errors Vn and VE are derived. These velocity
errors are integrated to obtain the latitude error and the longitude

§X = 31+ (§Vu/Ro)At
§b = §¢ + (SVelRo0S) AL

where R, is the radius of the earth. Then the noise-corrupted direction

error ’

cosines,.longitude, and velocity out;uts are:
Cyy & Cyy — CoSX TN Sh
CHY R @y 4 ek BAMASD

Cxiz Cyn o Co3NAD
X ¢ + o

Uy = V“—(-(VN
where is the wander angle. The following codes are Inserted at the

end of INSIN and INSNAV, respectively:

Code To Be Inserted In INUIN Subroutine

DOUBLE PRECISION XLINVE,XLINVN,DLINVE,DLINVN,PI2
PI2=6.28318530717958648D0

CALL RDN(U1)

CALL RDN(U2)
XLINVE=DSQRT (-2 .DO*ALOG(UL) ) *COS (P12#U2)
XLINVN=DSQRT(—2:DO*ALOG(UI))*SIN(PIZ*UZ)

DELLAT=0.

DELLNG=0.

SDINVE=(SQRT(2.)/2.)/(3600.*FPSKTS)

TAUINV=1800.

SDINVN=SDINVE

IF( (IERROR .AND."000007) .EQ."000001) SDINVN=(Q.

IF ((IERROR.AND."000007) .EQ."000004) SDINVN=5*SDINVN
IF ((IERROR.AND."000070) .EQ."000010) SDINVE=0

IF ((IERROR.AND."'000070) .EQ."000040) SDINVE=5*SDINVE

.-...

P




A S

Lamn M e Sie

Code To Be Inserted In INUNAV Subroutine

DOUBLE PRECISION XCINVE,XCINVN

IF((IERROR.AND."000077) .EQ."000011) GO TO 100

CALYL RNOISE(XLINVE,DTINUS,TAUINV,SDINVE,DLINVN,XCINVN)

CALL RNOISE (XLINVN,DTINUS,TAUINV,SDINVN,DLINVE,XCINVE)

XLINVE=~XCINVE

XLINVN=XCINVN

VELEFS~VELEFS+DLINVE

VELNFS=VELNFS+DLINVN

DELLAT=DELLAT+(DLINVN/EARADF) *DTINUS

DELLNG=DELLNG+(DLINVE/ (EARADF#*COS (ANLATR) ) ) *DTINUS

FLNGOR=FLNGOR+DELLNG i

CXXDIR=CXXDIR-COS (WANDER) *SIN(ANLATR) *DELLAT }

CXYDIR=CXYDIR+SIN(WANDER)*SIN (ANLATR) *DELLAT 1

CXZDIR=CXZDIR+COS (ANLATR) *DELLAT
100  CONTINUE

3.3 TACAN Error Model ) 3
Random, time-correlated errors, having the following characteristics,

are added to the TACAN range and bearing measurements:

Range Bias Error Standard Deviation 2000 ft. ) ﬁ
2 deg.

Range and Bearing Correlation Time = 5 sec.

Bearing Bias Error Standard Deviation

Range and Bearing Mean Error =0

, '. 1
The following code is inserted into the TACAN and CHNTAC subroutines of
DAIS.

Code To Be Inserted Into TACAN Subroutine \ *

DOUBLE PRECISION XLTACR,XLTACB,PI2

CALL RDN(U1)

CALL RDN(U2)

XLTACR=DSQRT(~2.DO*ALOG(U1))*DCOS (PI2*U2) -
XLTACB=DSQRT (-2 .DO*ALOG(U1) ) *DSIN(P12*U2)




- =

-

I~

SDTACR=2000.
SDTACB=2./DEGPRR

TAUTAC=S.

IF((IERROR.AND."000700) .EQ."000100) SDTACR=O0.
IF((IERROR.AND."000700) .EQ."000400) SDTACR=5.*SDTACR
IF ((IERROR.AND."007000) .EQ.”001000) SDTACB=0.

IF ((IERROR.AND. "'007000) .EQ."004000) SDTACB=5.%*SDTACB
DTTACS=DELTIM*(8./ITRATE (MODELN))

Code To Be Inserted Into CHNTAC Subroutine

DOUBLE PRECISION XCTACR,XCTACB
IF((IERROR.AND."007700) .EQ."001100) GO TO 100
CALL RNOISE (XLTACR,DTTACS,TAUTAC,SDTACR,DLTACR,XCTACR)
CALL RNOISE (XLTACB,DTTACS,TAUTAC,SDTACB,DLTACB,XCTACB)
XLTACR=XCTACR
XLTACB=XCTACB
CRANGF=CRANGF+DLTACR
CAZMIR=CAZMTR+DLTACB
100 CONTINUE

3.4 Air Data Error Model

In order to corrupt true air speed (TAS) without disturbing the
calculation of altitude, the temperature output from the ailr data sensor
model is perturbed. The sensitivity of the TAS to changes in the

temperature 1is related as follows:

dTk _ =244
""T’z TAS

where Tp 1s the temperature in deg.R. A percentage error in the TAS of
k%Z, 1 , is:

“T}Z. = —1]1_ (\ t 2Lk:‘hCX£>
where R is a random, time-correlated variable with the following parameters:

Percentage Error in TAS = 3%, 1§

Correlation Time = 3 min.




The following code 1s inserted in the ADCIN and ADC subroutines to

achieve the required temperature corruption.

To Be Inserted In ADCIN Subroutine

DOUBLE PRECISION XLADCT
CALL RDH(U1)

CALL RDN(U2) .
XLADCT=DSQRT (-2 . DO*ALOG (UL)) *COS (P12+U2)

SDADCT=3.

TAUADC=180.

IF((IERROR.AND."070000) .EQ."010000) SDADCT=0.

IF ((IERROR.AND."070000) .EQ."040000) SDADCT=5.*SDADCT
DTADCS=DELTIM*(64 ./ ITRATE (MODELN))

To Be Inserted Into ADC Subroutine

DOUBLE PRECISION XCADCT
IF ((IERROR.AND."070000) .EQ."010000) GO TO 100
CALL RNOISE (XLADCT,DTADCT,TAUADC,SDADCT,DLADCT ,XCADCT)
XLADCT=XCADCT
TMALTR=TMALTR*(1.+2.*DLADCT/100.)
100 CONTINUE

IVv. THE FUNDAMENTAL STRUCTURE OF KALMAN FILTER
The system state is described by:

K () = (ke K) % (K)  B(K) WL+ & w i

and the measurements are described by

200 = £ (K) %K) ¥ (K) r

where,

X(k) = n-by-1 state véctor at time £y ' ]
U(k) = r-by-1 deterministic input vector K

H(k) = s-by-1 driving noise vector

Z(k) = m-by~1 measurement vector




TN T T e r—— re——y—

V(k) = m-by—i measurement noise vector

h i (k+1,k) = n~by-n state transition matrix —

_ B(k) = n-by-r deterministic input matrix
G(k) = n-by-s noise input matrix

F H(k) = m-by-n measurement matrix

and, W(k) and V(k) are zero mean white noise sequénces with knowm

covariance:

, A o=K

E 5T “_,‘U)w_mﬁ-:ﬁ-é 3w
R (K J::K (

EL \LUB\lUQT:\"—{ o JK |

3 \M.LS)\-/-LW;‘:-\ =0 :

The Kalman filter updates the state estimate X(k) and error covariance
P(k) at the measurement time t; by: 3

R - R () 4+ (<)Y («)
P = () - %W B P (<)

From one measurement to the next, the state and error covariance are

extrapolated as follows:

QU,{' QP(K K- I) QLK \)—(-BCK—-I)U(K ) ‘
_E. (K) = LK K1) PCK-\)¢(K K-—\) +G\(K \)&(u(q)e] (“-)

where K(k) is the Kalman filter gain and Y(k) is the innovation process, |

KU = P ) gy v (! |
N = 2(«) —H) Y(x°) .




and

1) =el N VY]l
= W (K) LK) BK) 1R (&)

The above recursive relations are initiated by apriori knowledge of
the state and the error covariance at time . Thus,

A
)Q(-O) = Yo

?_{(0) - .P_.a

V. FULL-SCALE STATE SPACE ERROR MODELS
The comprehensive error models, which are the departing point of

the models simplifications, are presented in this section (Ref 1).

5.1 Inertial System Error Model

With the latitude~longitude mechanfzation (x: level east, y: level
north, z: wup) of the platform orientation, the full-scale inertial
system errors model is developed in terms of the following state variables:
(1) Position errors(gz‘)gzm ,5&)defined as the computed values

ninus the true values,

(2) Velocity errors (5"._, 5\/;“ JVU) defined similarly,

(3) Misalignment angles defined as angles from the computer
axis to the platform axes,

(4) Accelerometer errors (oze_ ’ o, ,du)

(5) Platform drift errors ( Qe ,€ns &u)

Because of the limited cross-feed between the vertical loop and the
level loop and due to the fact that the vertical loop needs to be -
stabilized by the barometer altimeter measurement of the altitude, the

vertical and the level loops are decoupled.

Uy




5.1.1 Inertial System Level Loop State Equations

(LVe/P) bw\La\ S iva
Va R ) em L) S e + & Vn
“'"‘L"s }22 o (W bt (Ve 12} Bwb) YV"““W""*“;‘V '“(.*7

e 5T — (2ihe 5 L+ (Vo IR T ) Se =AY+ 1 €,

Wo ¥, "w"\\f,u t€e

—Wy Y W), £ Cnn
Wine— We Y+ S

~( 1Tz e)ol o (e )¢
""L‘/T:Ll\\ ol — (‘ /'Qu) M‘u
- (I I'l'c-o)@c_ -+ Qn@t)ﬂec
— U T € + U Ten) Ve

-Q‘(‘1 'Eu> Cu- Q 7/720) New

radius of the earth

latitude

Schuler frequency

earth rotation rate
accelerometer outputs, i=e, n, u
gyro outputs, i=e, n, u
correlation times

white zero-mean Gaussian noises

errors in the gravity vector, i=e, n

5.1.2 Baro-Inertial Vertical Loop State Equations

The vertical state equations are:

8 %
5.

5%y

= ClFx( -—-{-—C"{TCICLI)C;\)(L —l'Czqﬂ\Q

Q?'ws — ) Sxy <+ CCq 8% —d X+ 48@\.\-6})
Cadity —~Cyey & x; e 5(@c-g),

u




where

g.’l—j‘ = Szk
§v, = §vg

The Cy values are selected to obtain a desired vertical loop time constant.

5.2.1 Measurement Error Model For TACAN (Ref 1)

The bearing and the range error measurements are:

:p = eus'_'(g'rﬂtw
(i) Sa— (M) ERM —dp =+ Mp

SP = Iows "”emc.mu
= (xl8) § Pe -t (¢18) SR ~bp x4

1!

where
= RS by lecﬂituw)
= K(’L‘km""\—'—(‘un—ﬂB

h wle ™ \’\'TMA'N

2%

?

3

A

é = b ‘31 I
Brcarns = (44 %)
Bws = Free b5p-"s 57 e
Pracon = ém«—% o ( a/i/a,c)'m{/z,‘—f @ﬂ)mc .

Krhw,__ —r(bl"/ax)mcé‘lzg + (2o} s S

The TACAN measurement biases b and b /. are represented as state variables,
by =M
RV




5.2.2 Measurement Error Model For ILS (Ref 1)

The localizer measurement ) and the glidescope measurement S are

modelled as follows:

= '}\+M487\ ——\17’
S= Spe +8S—Vs

. where VN Vs are zero mean white noise, and S’?\ ,S S Are zero mean
LI exponentially correlated variables which will produce two extra state

- variables. The measurement errors to be used are:

3 S$2Z9 = Nius — P
g = (NIA)S Re, — (X/A)ERn "‘gl\'t‘(/) ' |

P 69;}: Smls"'sn..j .
! - (p/(A'l’%)L) gzu. HSétVS .

where
! 2. = ReoS Ly (’ekm_"Lu-J [
¢ R (.L-A—(C. — L\:..S\ |

z =
A = k{_‘" c —‘l: le. S
Q 2"ty
5.3 Simplified Models (Ref 1) .
A Kalman filter based on the comprehensive models of the previous

-

"l

» section 1s impractical because of the excessive computation burden on -
the on-board computer. In order to develop a workable Kalman filter, -
the underlying models must be simplified. These simplifications will

| result in the filter performance degradation. Some of these simplifi-

J cations may result in an unacceptable loss in the performance of the ‘

resultant filter. Thus, it 1s essential that the performance sensitivity

to each simplification be evaluated. The rest of this sectfon outlines

some of the feasible simplifications.




.

5.3.1 Simplified Inertial Level Loop
The step-by-step simplifications are performed in the following

order: . '

Step 1 All the terms in the comprehensive state equations which are
of the order of magnitude of wy, are ignored, resulting in
removal of the weak coupling between the states, The result
will not be the reduction of the number of states, but will
make the state transition matrix sparse.

Step 2 Model the accelerometer output uncertainties by a white noise
of appropriate power. This will resuit in reducing the number
of states by two.

Step 3 The three states modelling the gyro drift rates are removed by
replacing the gyro drift by a white nolse of appropriate intensity.

After the above three-step simplification, the state equations

&Ve,

Svn

™ S — Oel Y, ~ AW, et B
-~ R — ou YWe — Ae'Y, +¥n ~+ 3q
'\P.p, Wu M = i Wi ot S

Y — W, € We M —t &

T 2 wwuape — e W — Gl
5.3.2 Simplified Vertical LQQEGL &

Although the undamped vertical loop 1s unstable for the short

become:
St
§ R
&Ve
& Vi

yooour nd

period during approach and landing, the Kalman filter can be developed
using the undamped vertical loop dynamics.

g'l\.: -~ SVK
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5.3.3 Simplified TACAN Model
The state due to the TACAN range bias is removed.
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